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ABSTRACT 

Feature-based methods have been recently considered in the literature for detection of stationary human targets in 
through-the-wall radar imagery. Specifically, textural features, such as contrast, correlation, energy, entropy, and 
homogeneity, have been extracted from gray-level co-occurrence matrices (GLCMs) to aid in discriminating the true 
targets from multipath ghosts and clutter that closely mimic the target in size and intensity . In this paper, we address the 
task of feature selection to identify the relevant subset of features in the GLCM domain, while discarding those that are 
either redundant or confusing, thereby improving the performance of feature-based scheme to distinguish between 
targets and ghosts/clutter.  We apply a Decision Tree algorithm to find the optima l combination of co-occurrence based 
textural features for the problem at hand. We employ a K-Nearest Neighbor classifier to evaluate the performance of the 
optimal textural feature based scheme in terms of its target and ghost/clutter discrimination capab ility and use real-data 
collected with the vehicle-borne multi-channel through-the-wall radar imaging system by Defence Research and 
Development Canada.  For the specific data analyzed, it is shown that the identified dominant features yield a higher 
classification accuracy, with lower number of false alarms and missed detections, compared to the full GLCM based 
feature set.  
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1. INTRODUCTION
Through-the-wall radar imaging (TWRI) covers a broad range of applications in both civilian and military contexts, 
ranging from surveillance and reconnaissance to hostage rescue missions and searching for survivors in natural disasters. 
One of the primary objectives of TWRI is to provide means for detection of stationary humans obscured by walls.1,2 This
highly desirable objective is challenged by the presence of strong clutter caused by the electromagnetic (EM) scatterings 
from the building structure and other stationary indoor objects, and also by the rich multipath returns resulting from 
target interactions with the indoor environment. The losses encountered by the signal due to the presence of exterior and 
interior walls between the radar and the targets  limit the use of biometric features, such as breathing and heartbeat, for 
identifying stationary humans inside buildings. As such, despite the presence of clutter and multipath ghosts in radar 
images, most of the efforts related to stationary indoor target detection have been focused solely on the development of 
effective techniques in the image domain.3-7

Feature-based methods have shown promise in discriminating the true targets from multipath ghosts and clutter that 
closely mimic the targets in size and intensity in through-the-wall radar imagery.7,8  More specifically, target and clutter
discriminating characteristics in synthetic aperture radar (SAR) based indoor images have been captured through textural 
feature extraction from the gray level co-occurrence matrices (GLCM).  GLCMs encapsulate the local spatial 
relationships among the gray levels of neighboring image pixels and have found widespread application in optical and 
medical image analyses.9-11 Five commonly used co-occurrence based textural features, namely, contrast, correlation,
energy, entropy, and homogeneity, are obtained from known target and ghost/clutter regions in through-the-wall radar 
images and are used to train a minimum distance classifier.7
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Figure 1. Example of a 3D SAR image, based on real data experiments conducted by DRDC. 

 

In this paper, we address the task of feature selection in order to identify a relevant subset of the aforementioned five co-
occurrence features, while discarding those that are either redundant or confusing, thereby improving the performance of 
the feature based detection technique of Ref. [7]. A Decision Tree algorithm12 is applied to find the optimal combination 
of features for the classification problem at hand. A K-Nearest Neighbor (KNN) classifier13,14 is employed for 
performance evaluation of the identified dominant features in terms of their target and ghost discrimination capability 
and comparison with the full feature set. To this end, we use real three-dimensional (3D) images acquired with the 
vehicle-borne multi-channel through-the-wall radar imaging system developed by Defence Research and Development 
Canada (DRDC).15 The specific dataset corresponds to through-the-wall measurements of a small room with six human 
occupants, with one person sitting on the floor while the others standing at various locations. We show that, for the 
specific data analyzed, the energy and entropy are identified as the dominant textural features and provide superior 
classification performance over the full feature set. 

The remainder of the paper is organized as follows. Section 2 reviews the co-occurrence featured based detection 
technique, highlighting the five considered textural features.  Feature selection based on decision trees  is presented in 
Section 3. Performance comparison of the identified dominant features and the full feature set using real images is 
provided in Section 4.  Section 5 provides the conclusion. 
 

2. CO-OCCURRENCE FEATURE BASED DETECTION TECHNIQUE 
In this section, we review the co-occurrence feature based image domain detection scheme proposed in Ref. [7] for 
target and clutter/ghost discrimination in TWRI.  

Consider a 3D image of size N  M  L, whose pixels can assume an intensity value from the set {0, 1, ...,J −1}, where J 
denotes the total number of intensity levels. Figure 1 shows an example of such a 3D SAR through-the-wall image. 

2.1 Gray Level Co-occurrence Matrix  

A co-occurrence matrix is defined as a two-dimensional (2D) histogram of gray levels for a pair of pixels, which are 
separated by a fixed spatial relationship, specified in terms of distance and direction. With J as the total number of 
intensity levels in the image under consideration, the (p, q)-th element of a J  J GLCM ,dG corresponding to 
displacement ),,,( zyx dddd  is the relative frequency with which two neighboring pixels displaced by d occur in the 

image, one with gray level ,p  and the other with gray level .q  Formally, the (p, q)-th element of dG  reads as16 
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and ),,( lmnI and ),,( zyx dldmdnI are the intensity values of the two pixels with the 

spatial relationship d. Typically used values for the displacement d comprise an offset of one to two pixels  in thirteen 
possible directions represented by azimuth   and elevation  , each ranging from 0° to 135° in 45° increments.16,17

 After constructing the GLCM for a given d, we normalize the GLCM so that the sum of its elements is equal to 1. That 
is, the (p, q)-th element of the normalized GLCM is given by 
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Then, ),( qpdG  is the joint probability of occurrence of pixel pairs with a defined spatial relationship d having gray level 
values p and q in the 3D image. 

2.2 Feature Extraction 

Five different features, namely, contrast, correlation, energy, entropy, and homogeneity, are extracted from each 
normalized GLCM.7, 9, 17 Contrast measures the amount of local intensity variations present in the image and is defined 
as 
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The correlation feature is a measure of gray level linear dependencies in the image and is given by 
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where    ,  and ,  , 2211 are the means and standard deviations of the respective marginal distributions 
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textural uniformity and is defined as 
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The entropy feature measures the disorder or complexity of the image and is defined as  
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Finally, the homogeneity feature measures the closeness of the distribution of elements in the co-occurrence matrix to the 
co-occurrence matrix diagonal. It is defined as  
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For the through-the-wall stationary human detection problem, the aforementioned textural features are extracted from the 
GLCM’s for the aforementioned twenty-six displacement vectors . Therefore, the length of the resulting feature vector is 
130. It is noted that, instead of the entire image, the textural feature vectors are computed for known target and 
ghost/clutter regions for the training set and for those regions of the test 3D image, which are identified as candidate 
target regions.  



 
 

 
 

2.3 K-NN Classifier 

We employ a simple supervised learning algorithm, namely, the K Nearest Neighbors classifier, which is commonly 
used in learning and classification. Therein, an object is classified based on the “distance” of its features from those of its 
neighbors, with the object being assigned to the class most common among its K nearest neighbors.14 Euclidean distance 
is the commonly used distance metric. The neighbors are taken from a set of objects, called the training set, for which 
the correct classification is known.  

• If K = 1, the algorithm simply becomes nearest neighbor algorithm and the object is classified to the class of its 
nearest neighbor.  

• If K >1, the object is assigned to the class of the majority of its K nearest neighbors. 

Typically, K is chosen to be odd when the number of classes is 2 to resolve any ties. A higher K increases the 
classification accuracy but at the expense of computational time. 

2.4 Performance Metrics 

We consider three metrics, namely, accuracy, missed detection rate, and false alarm rate, to provide a quantitative 
assessment of the classification technique.  These metric are defined as follows. 

  objects ofnumber  Total

classifiedcorrectly  objects ofNumber 
Accuracy  (8) 

  objects ofnumber  Total

classifiedy incorrectl   targetsofNumber 
 DetectionsMissed  (9) 

  objects ofnumber  Total
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3. FEATURE SELECTION 
We consider decision tree analysis to identify a subset of the considered features that  is most relevant for distinguishing 
targets from clutter/ghost regions in the 3D images. Decision tree based scheme is a nonparametric approach which does 
not require any prior assumptions about the probability distributions of the various features.20 A decision tree is a 
hierarchical structure, which consists of directed edges and three type of nodes: i) A root node that has no incoming 
edges and zero or more outgoing edges, ii) Internal nodes, each of which has exactly one incoming edge and two or more 
outgoing edges, and iii) Leaf or terminal nodes, each of which has exactly one incoming edge and no outgoing edges. 
The tree is typically grown as a recursive partitioning of the training samples into successively purer subsets. If all of the 
training samples associated with a particular node t belong to the same class, then t is a leaf node and gets  assigned a 
class label. On the other hand, if the training samples associated with node t belong to different classes, then a single 
feature test condition is chosen to separate the sample points into smaller subsets . A child node is created for each 
outcome of the test condition and the records associated with the parent node t are distributed to the children based on 
the outcomes. The algorithm is then recursively applied to each child node until a stopping criterion is met.  

For the target and clutter/multipath discrimination problem, there are only two classes and the considered features take 
continuous values. As such, the test condition at the root and internal nodes takes the form of a comparison test with 
binary outcomes. That is, the feature value is compared to a threshold and the training samples are split accordingly.   
The design issues that need to be addressed are i) the determination of appropriate thresholds for the various features , 
and ii) the selection of the best feature to use at a particular node for making the split. For the latter, a goodness criterion 
is used to determine how well the various feature test conditions perform.  A typical strategy is to select the feature test 
condition that minimizes the weighted average  of an impurity measure )(H of the child nodes, given by 
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Figure 2. (a) Through-the-wall MIMO System. (b) Building used for Through-the-Wall Measurements (the dashed square 
indicates the room containing the human targets. (c) Scene with six human subjects. Photos by J. Lang, DRDC Ottawa.      

                       
where Q is the total number of training samples at the parent node t and iQ  is the number of training samples associated 
with the child node iv . The Gini index is a commonly used impurity measure, which is defined for the underlying two-
class problem as   
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with )|( ivjP being the fraction of samples belonging to class j at a given node iv .  

For each feature ‘X’, the threshold for the comparison test can also be determined by using the weighted average of the 
Gini index. The training samples are first sorted based on the values they take for the feature X and candidate thresholds 
are identified by taking the midpoints between two adjacent sorted values . For each candidate threshold, the data set is 
scanned to count the number of training samples less than or greater than the candidate. The Gini index values for the 
corresponding child nodes and their weighted average is then computed. The candidate that produces the lowest 
weighted average of the Gini index is chosen as the threshold for feature X. 
 

4. EXPERIMENTAL RESULTS 
We use real 3D images collected with DRDC’s through-the-wall multi-channel radar system.15 The radar is installed 
inside a vehicle with its two transmit antennas and an eight-element receive array mounted on the side of the vehicle, as 
shown in Fig. 2(a). The antenna elements are compact Y-shaped printed bowtie antennas and, when used in the vertical 
polarization, have approximately 60º beamwidth in the elevation direction and 150º beamwidth in the azimuth or 
horizontal direction.18 The receive array has an inter-element spacing of 15 cm, and the two transmit antennas are 
separated by 1.2 m. The transmit and receive array antennas have a horizontal spacing of 2 m. A frequency -modulated 
continuous wave signal covering the 0.8 to 2.7 GHz frequency band is used as the transmit signal. A switch is used to 
alternate the radar transmissions between the two transmit antennas, and the eight -channel radar receiver digitizes the 
eight received signals for each radar transmission. 
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Figure 3. Decision tree grown using 5 attributes extracted from 26 GLCMs using 11 target and 11 clutter regions. The labels X1, 
X2, X3, X4, and X5 denote energy, contrast, correlation, homogeneity, and entropy, respectively.  

 
A small room in the Troop Shelter building, shown in Fig. 2(b), was imaged three different times, with six, four, and one 
human occupant, respectively. The antennas were lowered on the van between measurements from the first  scene and the 
latter scenes, which resulted in a considerable increase in clutter. Fig. 2(c) depicts the scene with the six human targets. 
The exterior walls of the building are constructed of vinyl, chip board and drywall on a 16 in. spacing wood stud frame. 
The raw radar data were collected while the vehicle moved along a straight path parallel to the front wall of the building, 
allowing 3D images to be generated in downrange, azimuth, and elevation using backprojection.  

Eleven target regions and eleven clutter regions were extracted from the 3D through-the-wall images. GLCM 
computations corresponding to the 26 displacements were carried out, followed by the extraction of the 130-element 
textural feature vectors, for each target and clutter regions.  Thus, we had a total of 11 target feature vectors and an equal 
number of clutter feature vectors.  

4.1 Decision Tree Analysis 

We applied decision tree analysis to determine the dominant extracted features, which would provide reliable 
discrimination between the targets and clutter. In order to reduce the computational complexity and improve the ease of 
interpretation, we chose not to identify dominant features from amongst the 130 total features. Rather, we decided to 
determine the dominant attribute from amongst contrast, correlation, energy, entropy, and homogeneity. Thus, the values 
taken by these attributes under different displacements served as additional training sample points for the target and 
clutter classes.  Figure 3 shows the resulting decision tree. We observe that energy and entropy play a dominant role as 
they appear towards the top of the tree structure, whereas correlation comes in a distant third. Homogeneity and contrast 
have been identified as irrelevant attributes for the classification problem at hand since they do not appear in the tree.  

4.2 Classification Performance Comparison  

We first performed classification using the full feature set, i.e., the feature vector of length 130. Because of the 
availability of limited data (only 11 targets and 11 clutter samples),   we used leave-one-out cross validation,19 wherein 
the classification was  performed  22  times,  using one feature  vector from the dataset for  testing and the  remaining for  



 
 

 
 

Table 1. Performance comparison between the dominant features and the full feature set. 

Performance Metric Full Feature Set Energy & Entropy 

Accuracy 77.3% 90.9% 

False Alarm Rate 4.5% 0% 

Missed Detection Rate 18.2% 9.1% 

 

training each time. In this way, all of the target and ghost/clutter regions in the datas et were used for both training and 
testing.  We used a value of K=3 for the K-NN classifier. Table 1 (second column) provides the corresponding values of 
the performance metrics. We note that the classification accuracy is 77.3%, with 4.5% false alarms and 18.2% missed 
detections.  

Next, having identified the dominant features as energy and entropy, we proceed with classification using only the 
aforementioned textural features extracted from the 26 GLCMs. The new feature vector length is 52.  The third column 
of Table 1 provides the corresponding values of the performance metrics  when a K-NN classifier with cross-validation 
was used for K=3. We observe that, compared to the full feature set case, the classification accuracy has increased by 
13.6% with no false alarms and a 9.1% reduction in missed detections. This validates the improved performance of the 
selected features in discriminating humans from ghosts/clutter.  

 

5. CONCLUSION 
In this paper, we presented decision tree analysis to identify the dominant and most discriminating GLCM based textural 
features for improved capability to distinguish between targets and ghosts/clutter in through-the-wall radar imaging 
applications.  For the data analyzed, the energy and entropy attributes were determined to be  the most relevant amongst 
the set of five commonly used GLCM features , which also included contrast, correlation, and homogeneity. The 
performance of the feature based scheme based on the dominant attributes was evaluated using a K-Nearest Neighbor 
classifier. It was shown that, compared to the scheme based on all five attributes, the dominant features yielded a higher 
classification accuracy, with lower number of false alarms and missed detections. 
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